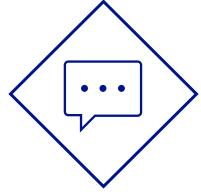
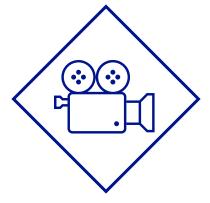
DSO Electricity Futures Autumn Conference

Unlocking the power of flexibility – a deep dive 14 October 2025

Charlotte Pirie

Stakeholder Experience Manager Distribution System Operator


Electricity Distribution


Housekeeping

Please make sure your microphone is muted when not speaking

For questions or feedback, please raise your hand or use the Q&A/chat box

We are recording this session for sharing with our stakeholders

Agenda

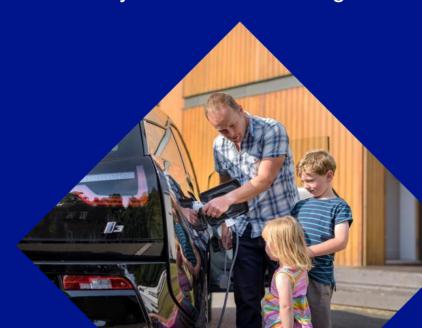
14.00 Welcome, housekeeping and session outline

14:10 Why Flexibility is needed, and defining our needs

Products and dispatch decisions

14:30 Performance Monitoring and SettlementLooking ahead – latest market insights

10:45 Q&A Open forum



10:55 Share your views Slido Poll

Charlotte Pirie
Stakeholder Experience Manager

Helen SawdonHead of DSO Operations

Yingyi Wang
Flexibility Commercial Manager

Getting to know you

It's important for us to understand your needs and how we support your involvement in flexibility.

How familiar are you with Flexibility?

Have you participated in Flexibility before?

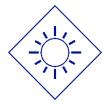
Why Flexibility is needed

Helen Sawdon
Head of DSO Operations

national grid

Why we need Flexibility

Five areas where Flexibility helps


Keep the lights on reliably

Flexibility helps balance supply and demand, reducing the pressure on the network.

Save money

By using existing capacity more efficiently, flexibility avoids costly and disruptive network upgrades.

Support more renewable energy

Flexibility smooths out the peaks and troughs of wind and solar power, so we can rely less on fossil fuel backup.

Cut carbon emissions

Shifting demand or exporting local generation, we can make better use of renewables and reduce emissions overall.

Empower communities and customers

Flexibility turns consumers into active participants, giving people, businesses, and communities a chance to earn and contribute to Net Zero.

Defining our needs

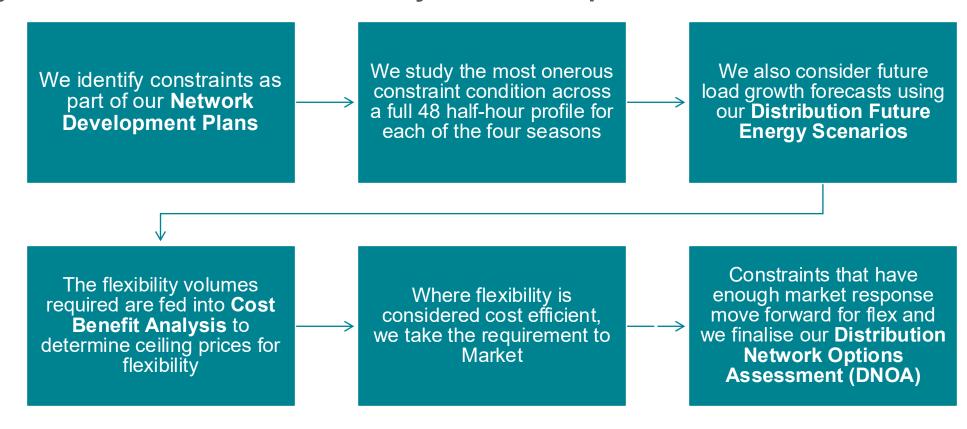
How NGED forecasts and shapes needs (System Planning)

Forecasting

The Distribution
Future Energy
Scenarios
(DFES) identify how
customers will use our
energy in the future

Network impact assessment

The Network
Development Plan
(NDP) uses forecasts to
analyse and identify
future network
constraints


Optioneering

The Distribution
Network Options
Assessment
(DNOA) outlines how
we plan to invest in our
network to solve
constraints

How NGED forecasts and shapes needs (Flexibility Analysis)

Our analysis determines whether flexibility is a viable option to resolves a constraint.

SAOU

Scheduled availability, Operational Utilisation

This service has been developed to support the network in the event of specific fault conditions, such as during maintenance work.

What we procure

Service Required	Demand Turn Down/Generation Turn Up Demand Turn Up/Generation Turn Down
Constraint Voltage Level	HV
Procurement Frequency	Yearly
Pricing Mechanic	Pay-as-clear
Payment Structure	Availability + Utilisation
Service Window	DSO defined
Metering Requirement	Minute by minute or Half-hourly
Dispatch Instruction	Day ahead of delivery start

SUScheduled Utilisation

A scheduled constraint management service with fixed delivery periods.

What we procure

Service Required	Demand Turn Down Demand Turn Up
Constraint Voltage Level	HV+LV
Procurement Frequency	Yearly and Weekly
Pricing Mechanic	Pay-as-clear
Payment Structure	Utilisation only
Service Window	Utilisation; 4 x 4-hour windows; Night: 00:00-04:00 Morning: 08:00-12:00 Afternoon: 12:00-16:00 Evening: 16:00-20:00
Metering Requirement	Minute by minute or Half-hourly
Dispatch Instruction	Day ahead of delivery start

OUOperational Utilisation

This service supports power restoration following rare fault conditions.

What we procure

Service Required	Demand Turn Down/ Generation Turn Up
Constraint Voltage Level	HV
Procurement Frequency	Yearly
Pricing Mechanic	Fixed premium price
Payment Structure	Utilisation only
Service Window	Availability; 3 x 8- hour windows: 00:00- 08:00 08:00-16:00 16:00-24:00
Metering Requirement	Minute by minute or Half-hourly
Dispatch Instruction	15min ahead of delivery

Operating Flexibility

We procure flexibility services across two main timeframes: our Long-Term flexibility market and our Short-Term flexibility market. These timeframes influence the operational decisions required to optimise the network;

Long-Term Flexibility – Year Ahead; Baseline needs, ensures certainty

Short-Term Flexibility – Week Ahead; Supplements Long-Term, responsive to real-time forecasts

Product	Attributes	Procured	Utilisation Dispatch Decision	
SAOU Scheduled Availability, Operational Utilisation	Scheduled Availability, Utilisation Instructed day ahead	Long Term – Year Ahead	Day Ahead Notice With optional 15minute API dispatch signal	
SU Scheduled Utilisation	Utilisation Only	LV Long Term – Year Ahead HV Short Term – Week Ahead	Locked-in Year Ahead Week Ahead Notice With optional 15minute API dispatch signal	
OU Operational Utilisation	Utilisation Only	Long Term – Year Ahead	In real time Mandatory 15minute API dispatch signal	

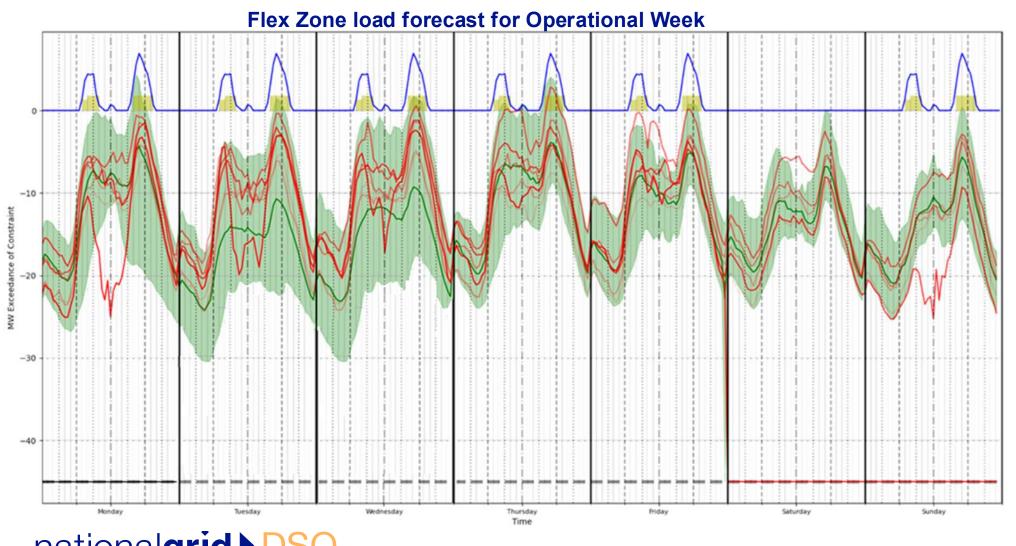
How we decide which flex to dispatch

Guiding Principles

The following principles form the foundation of our dispatch methodology:

Principle	Description		
Security	Flexibility will be dispatched in a way that maintains the security of supply.		
Cost	System needs will be met at the minimum level of cost.		
Operability	Services will be selected based on their compatibility with operational requirements.		
Competition	Transparency will be provided in all dispatch decisions and activities.		
Fairness	Equal opportunities to participate will be ensured, supported by a fair dispatch methodology.		

You can find out more in our Operational Decision Making Framework


Within National Grid DSO, we have developed a prioritisation service selection framework which is our practical implementation of the ENA guiding principles. This prioritisation ensures consistency and clarity in decision-making and

Prioritised Service Selection Principles

supports both immediate service selection and the ongoing development of rules for implementing an automated rule-based approach to dispatch.

Priority	Name	Description	Corresponding Open Networks Principle	
1 Technical Integrity		Network and system frequency integrity requirements must be met, supported by appropriate flexibility services.	Security	
2	Customer Security	The ability to meet customer demand and accept customer export under both normal and outage network conditions.	Security	
3	Value	Flexibility services will be procured and operated to deliver cost-effective outcomes.	Operability & Cost	
4 Market Resilience		Where multiple suitable services are available at similar costs, dispatch will be shared among providers.	Competition & Fairness	

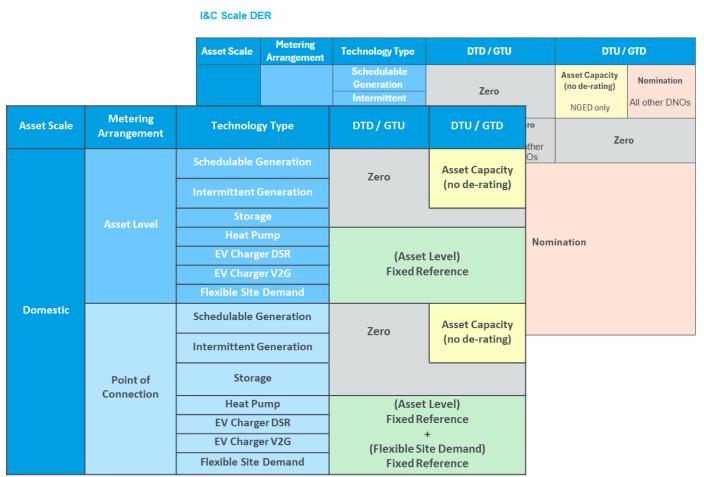
How we decide when to dispatch

Weekly Dispatch Activity

Performance Monitoring & Settlement

Yingyi Wang Flexibility Commercial Manager

Baseline Methodology


Baseline refers to a level of energy consumption or generation of energy resources which is used to measure the change they deliver when flexibility services are activated.

4 types of baseline are currently used:

- 1. Zero
- 2. Asset Capacity
- 3. Nomination
- 4. Fixed Reference

The chosen of baseline methodology strikes a balance between standardising practices across DNOs and ensuring consistency with our DFES planning assumptions.

Baseline Value

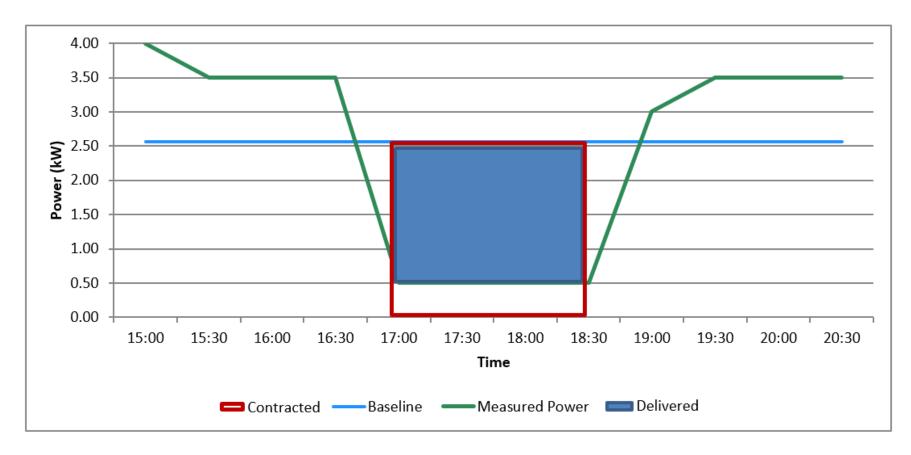
A <u>Baseline Value Table</u> is published annually, from which the baseline value of an asset can be looked

up based on the four factors below:

Season (winter or summer)

- Technology type of the asset
- Metering location (asset metering or point of connection)
- Product/ Market the asset is participating in

The unit's baseline equals the sum of the baseline value of each asset

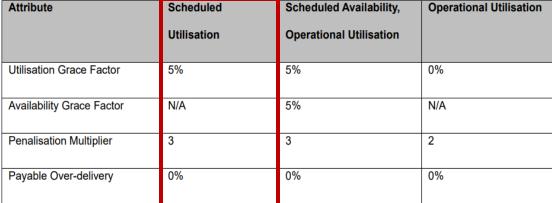

Example: For a unit (comprising 2 domestic EV charger, metered at asset level), the baseline for providing SU_HV in winter is calculated as:

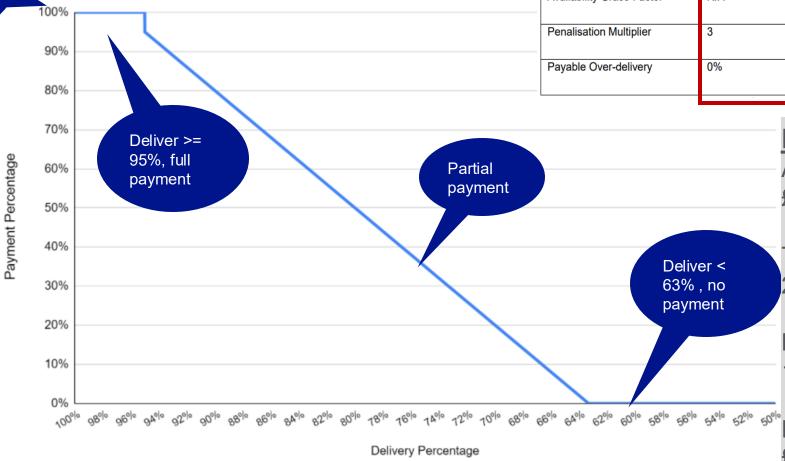
1.28 * 2= 2.56 (KW)

	Season	Winter (Between week 39-12)				ason
		SU Scheduled Utilisation - HV	(DTU/GTD ONLY) Scheduled	SAOU_DA Scheduled Availability, Operational Utilisation – Day Ahead Notice	_	OU_15 Operational Utilisation – 15min Instruction
	Market Gateway Product Code	SU_HV	SU_HV_DTUGTD	SAOU_DA	SAOU_DA_DTUGTD	OU_15
nt						
I		1.28	Zero	1.28	Zero	1.28
		2.06	0.54	2.06	0.54	2.06

Delivered Volume

Example:


- This unit wins a contract to provide
 2.5 KW/h, SU_HV (a Demand Turn Down service) between
 17:00-18:30
- Baseline: 2.56 KW
- Measured Power: 0.56KW
- Delivered volume:
 2.56-0.56= 2 KW/h



Payment Mechanics

Deliver > 100% will be capped at full payment

Utilisation Payment based on delivery

Example:

Accepted Utilisation Price: £10/KWh

This unit's delivery rate:

2/ 2.5 = 80%

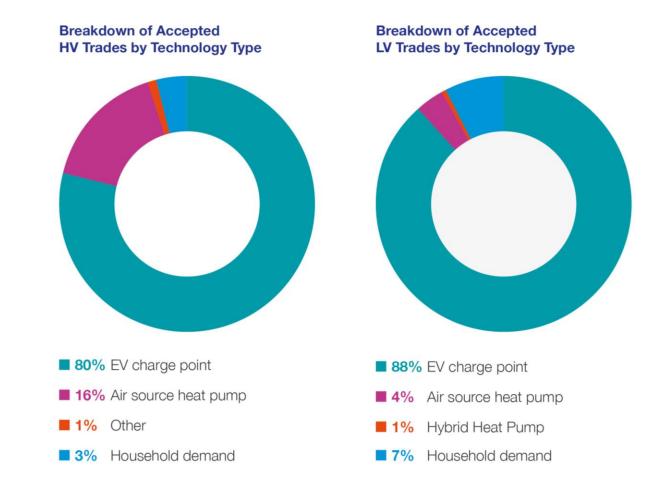
Payment rate:

100%- (95%-80%)*3=55%

Final utilisation payment: £10/KWh*2.5KW/h*1.5h*55% =£20.625

nationalgrid > DSO *ENA Standardised DNO Settlement Methodology can be found here.

Latest market insights



Our year in numbers **221GWh** 162,800 Flexibility assets Of flexibility sought 19.8GWh signed up to our in our long-term 90% market platform. flexibility market. This is more than Of flexibility procured double the amount across our four Of registered assets are from **domestic** we had last year. license areas. 70,000 households. 63 HV and **Dispatch events**, which 2.9**GWh** is double the volume 744 LV zones from last year. Of flexibility dispatched. Were launched for This is enough energy flexibility procurement, to power **392,000** signalling market value homes for a day. upwards of £5m. New **Demand Turn** Up zones launched in September 2024. This service rewards customers for shifting their electricity use to We're driven times when there's a lot by cleaner of power on the grid. energy nationalgrid *These numbers are based on market activities between April 2024 and March 2025. The full Market Insight Report can be found on our website

From Growth to Value

- NGED sources flexibility from a range of technologies, with Electric Vehicle Charge Points making up the largest share by number of assets.
- Benefiting from the increased participation, in our 2024 long-term procurement, we awarded flexibility in HV zones at prices 34% lower than our ceiling prices, and in LV zones at 18% lower. This resulted in savings of approximately £75,000 which we pass directly to our customers.

Technology demographic of assets in Market Gateway as of March 2025

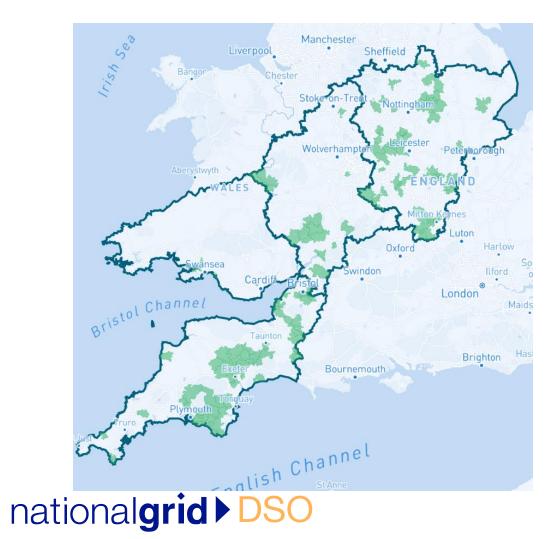
2025 Long Term Requirements

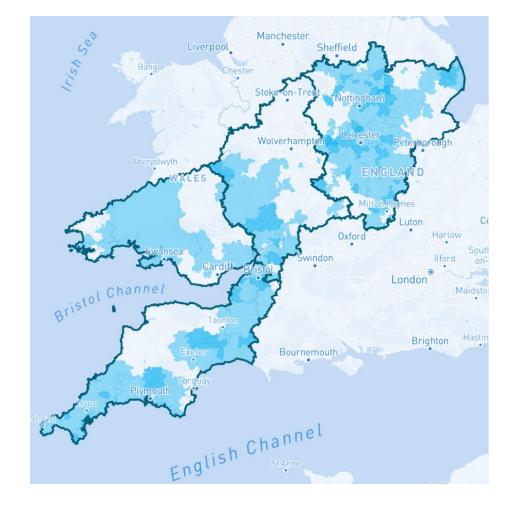
Procurement is for delivery between April 2026 and March 2027

HV- 67 Demand Turn Down, 5 Demand Turn Up and 24 Flex Up Zones LV - 1144 Demand Turn Down Zones

4.5 million customer in open zones

Highest HV zonal ceiling price; £5000/MWh Average HV zonal ceiling price; £430/MWh




Highest LV zonal ceiling price; £888.44/MW/h Average LV zonal ceiling price; £238.63/MW/h

2024 VS 2025 Long-term Tender Comparison

2024 2025

Evolving Local Flexibility Market

We want to operate liquid, competitive and coordinated markets to deliver maximum value for the GB consumer.

Simple

- Straightforward
 & Standardised
 processes
- Removal of barriers

Scalable

- Digitised processes
- Low transaction cost

Clear

 Transparent data on needs and usage

Adaptable

 Change to accommodate new products, timeframes, use cases

Questionsand Answers

We want to hear your views

It's important to us to make sure we are delivering your priorities.

Has today improved your understanding of flexibility?

Has today made you more aware of how you can participate in flexibility?

