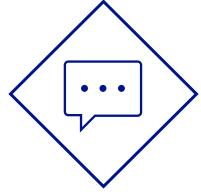
DSO Electricity Futures Autumn Conference

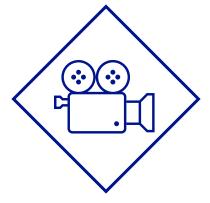
System Planning: ensuring we can power our future
21 October 2025

Elizabeth Hanger

Strategic Engagement Officer Distribution System Operator


national**grid**

Electricity Distribution


Housekeeping

Please make sure your microphone is muted when not speaking

For questions or feedback, please raise your hand or use the Q&A/chat box

We are recording this session for sharing with our stakeholders

Agenda

10.00 Welcome, housekeeping and session outline

Elizabeth Hanger, Strategic Engagement Officer (East Midlands)

10:05 Our System Planning processOli Spink, Head of System Planning

10:10 Our Distribution Future Energy Scenarios (DFES)

Malachi Moses-Gair, DSO Engineer

10:20 Network Development Plans

Jonathan Bluff, DSO Engineer

10:30 Distribution Network Options Assessment

Peter Gaskin, DSO Engineer

10:35 Q&A

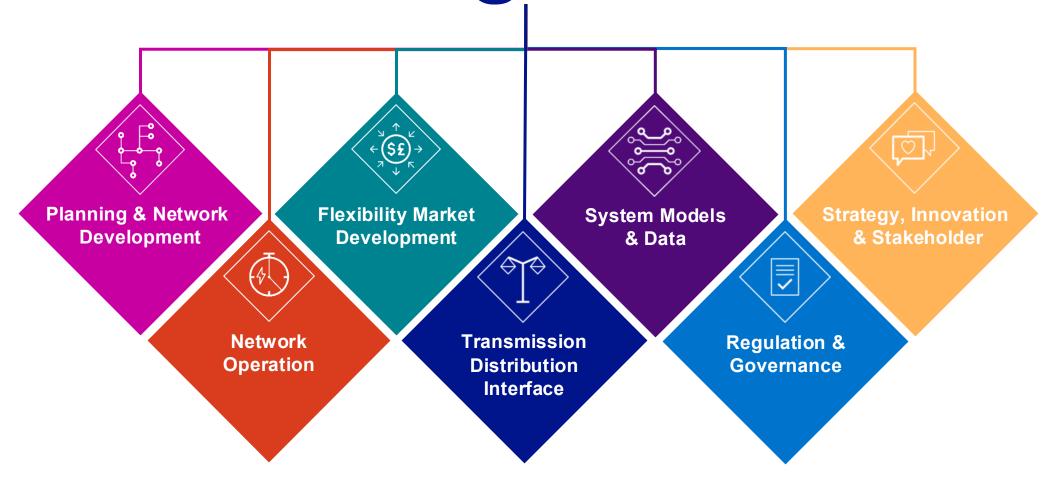
Elizabeth Hanger, Strategic Engagement Officer (E Mids)

Getting to know you

It's important for us to understand your needs and how we support your involvement in system planning.

How familiar are you with our system planning work?

How often do you engage with the system planning team?



www.slido.com #189 2492

Our system planning process

Oli Spink
Head of System Planning

national grid

System planning process

Forecasting

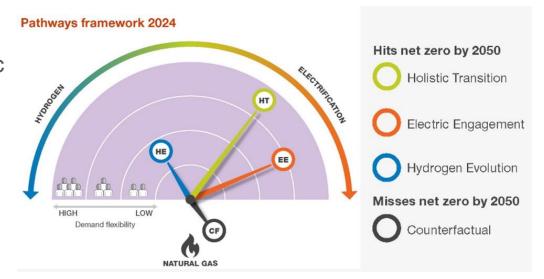
The Distribution
Future Energy
Scenarios
(DFES) identify how
customers will use our
energy in the future

Network impact assessment

The Network
Development Plan
(NDP) uses forecasts to
analyse and identify
future network
constraints

Optioneering

The Distribution
Network Options
Assessment
(DNOA) outlines how
we plan to invest in our
network to solve
constraints


Distribution Future Energy Scenarios (DFES)

Malachi Moses-Gair
DSO Engineer, System Planning

Distribution Future Energy Scenarios

- The DFES outlines the range of credible futures for the growth of the distribution network. We began producing it in 2015.
- DFES encompass the growth of demand, storage and distributed generation including technologies such as electric vehicles, batteries, and solar.
- The National Energy System Operator's (NESO's) Future Energy Scenarios (FES) provide the overarching framework.
- DFES is the first stage of our strategic investment process ensuring our network is ready for a decarbonised future.

DFES Methodology

Distribution-connected electricity generation

Renewable and low carbon

- Onshore and offshore wind
- Ground-mounted and rooftop solar PV
- Hydropower
- Marine

Fossil fuels and waste

- Biomass CHP
- Renewable engines (anaerobic digestion, landfill gas and sewage gas)
- Energy from waste
- Diesel generation
- Gas fired power

Distribution-connected energy storage

- Large-scale battery storage
- Non-battery storage, such as LAES and High-Density Pumped Hydro
- Domestic battery storage
- Domestic thermal storage (w/ heat pumps)

Large-scale electricity demand

New conventional demand

- New housing developments
- New non-domestic developments
- Data centres

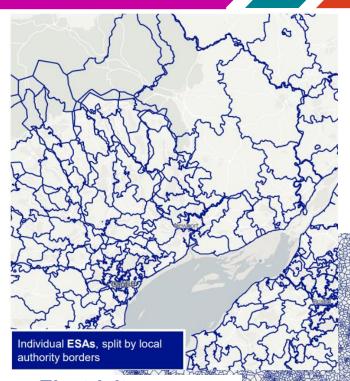
Low carbon demand

- Hydrogen electrolysers

Small-scale new electricity demand

Low carbon heat

- Heat pumps (all types)
- Direct electric heating
- Domestic air conditioners


Low carbon transport

- Electric cars and motorcycles
- Electric LGVs
- Electric HGVs
- Electric buses and coaches
- Domestic EV chargers
- Non-domestic EV chargers

national**grid** DSO

Electricity Supply Areas

The attributes of the land, buildings and people within an ESA inform the future deployment of each individual technology type.

Individual **LV ESAs** in the area around the Severn Estuary

Stakeholder Engagement

Licence area specific engagement webinars

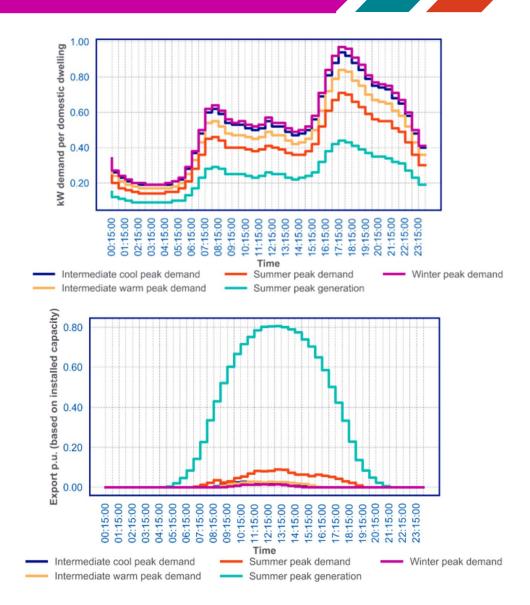
Major energy user engagement

New developments data exchange

Use of local authority planning status / information

Local energy strategy survey and data share

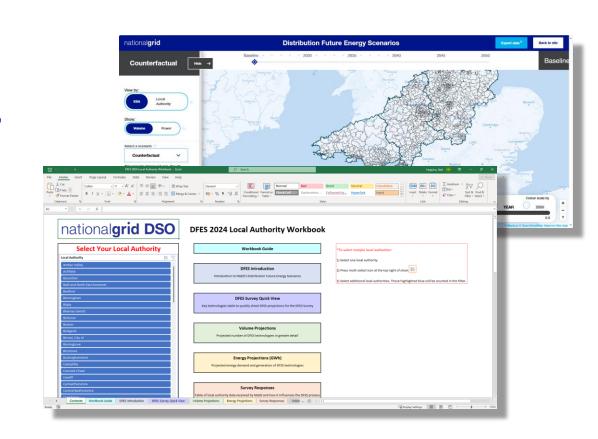
LAEP – reflect specific local energy plans/targets


Industrial cluster engagement

Direct contact with project developers and sector experts

Customer Behaviour Profiles

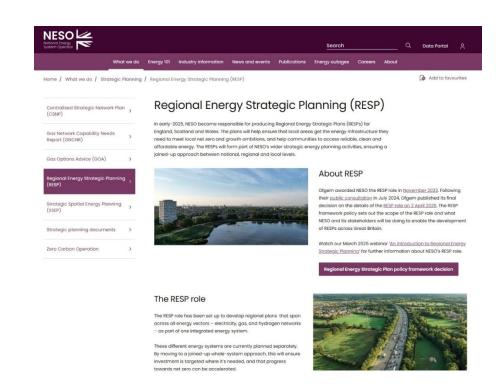
- To translate the DFES volume projections into a dataset that can be used for network analysis, customer behaviour assumptions are made.
- Customer profiles are used for a variety of representative days, to test the edge cases of what our network might experience.



Continuous improvement

Each year, we update our analysis and expand the scope to include emerging technologies. In 2024, we added Maritime, Aviation, Rail, and Agriculture. In 2025, we're including **Data Centres**.

We work with stakeholders to improve how they use our DFES data. This led to the creation of the **DFES interactive** map and a Local Authority workbook showing projections by local authority.



Continuous improvement

We're working in close partnership with the National Energy System Operator (NESO), sharing our DFES data to support the development of their Regional Energy Spatial Plans (RESP). We'll also be using insights from the transitional RESP to inform our DFES 2025, ensuring alignment and consistency across planning processes.

For our 2025 data collection, we **worked with UKPN and SSEN** so that local authorities with shared boundaries **only had to submit data once**. We then shared this across DSOs to inform all DFES outputs.

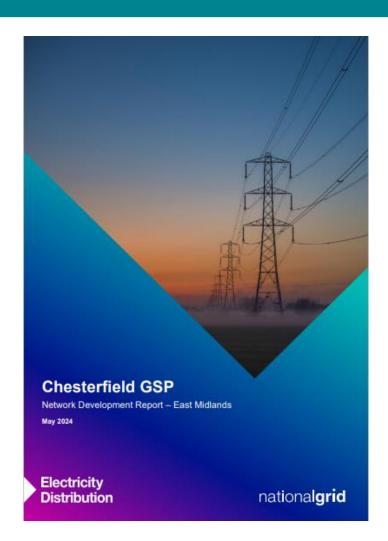
Network Impact Assessment

Jonathan Bluff
DSO Engineer, System Planning

Network Impact Assessment – what does it involve?

- Identifying network constraints
- Identifying mitigations to these constraints

Inputs


- 1. A digital model of our primary distribution network, published in the Long Term Development Statement.
- 2. Forecasts of how network usage will change over the next 10 years, across different times of day and different seasons (our Distribution Future Energy Scenarios).

By combining both, we can simulate future network use under various decarbonisation scenarios.

Network Development Plans

- NDPs are produced for all Grid Supply Points (GSP) & Bulk Supply Points (BSP) across the four NGED licence areas.
- Derived from the DFES analysis, the NDPs assess a 10-year projection on the future suitability of the Primary Distribution Network to continue to deliver for our customers, under the credible future energy scenarios.
- The latest NDPs were published on 1st
 May 2024 and are available on our website.

■■●●● DistributionSystemOperator

1.1 Network Topology

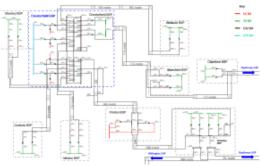
Chesterfield GSP is a 275/132 kV substation comprising four 275/132 kV, 240 MVA Super Grid Transformers (GGTs). The 132 kV busbar configuration is a standard waya-pround, with four busbar sections. Chesterfield main 1 and reserve 1 busbars are rated at 1200 A, whist main 2 and reserve 2 are rated at 2000 A. The site is normally fur un as a 2/2 arrangement, with bus-section circuit breakers closed and bus-coupler circuit breakers open. BSPs are split between the two halves of Chesterfield 132 kV such that during certain running arrangement, opening the bus-section circuit breakers creates two separate networks. Running the site with more than two SGTs on a busbar is not possible currently due to fault level constraints at Chesterfield 133 kV.

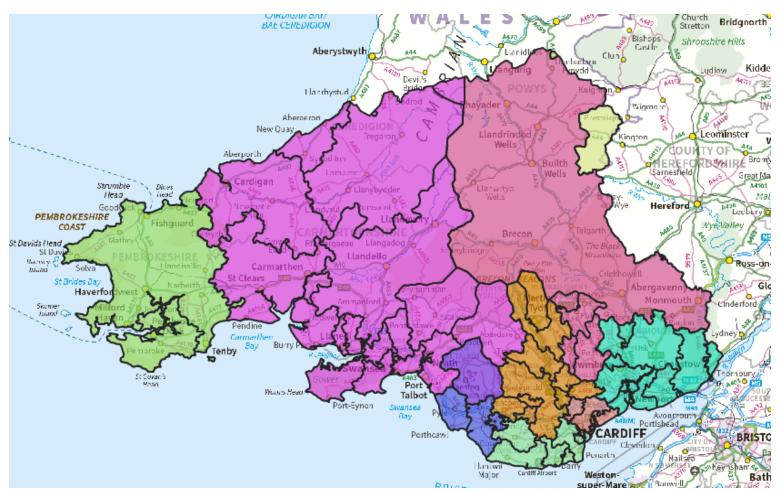
Chesterfield GSP has 132 kV interconnection with Staythorpe GSP via Clipstone BSP, normally open on 132 kV circuit breakers at Staythorpe, and via Annesley BSP, normally open on 132 kV isolators at Annesley BSP and 132 kV circuit breakers at Staythorpe GSP. Chesterfield GSP is also interconnected with Willington GSP via Annesley BSP.

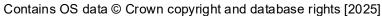
Chesterfield BSP is situated on the same site and comprises two 132/33 kV Grid Transformers (GTs). Alteton, Gotside, Staveley, and Winhield are all 132/33 kV BSPs supplied from Chesterfield GSP via dedicated, radial 152 kV dual circuits which connect to a pair of GTs at each BSP.

Mansfield and Clipstone BSP share two 132 kV circuits from Chesterfield GSP (the CS route). A 132 kV switching station is present at Mansfield BSP which facilitates the transfer of Clipstone BSP into Staythorpe GSP.

Pinution 132/11 kV and Annesiley 132/33 kV BSPs share a 132 kV double circuit from Chesterfield GSP (the HR toute). This section of 132 kV network is normally run closed at 132 kV at Annesiley BSP, creating a ring arrangement. Annesiley 132 kV is configured to enable 132 kV transfers to either Stuythorpe GSP or Willington GSP (via Heanor BSP / Loscoe Switching Station / Stanton BSP / Soondon BSP).

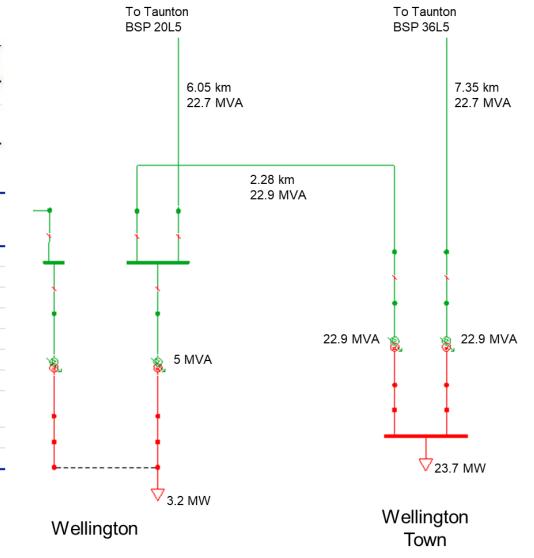



Figure 1.1.1 Chesterfield 132 kV network single line diagram


National Grid | May 2024 | Chesterfield GSP

3

- 25 reports covering all primary networks (from primary substation to Grid Supply Point)
- Reports either split by one per Grid Supply Point, or further split by the Bulk Supply Points fed downstream
- We have presented our NDP to all local stakeholders and are incorporating feedback into our NDP refresh plan


Example – Constraint and Optioneering

Constraint	N-1 Condition	Subsequent N-2 Condition	First studied year constraint is observed in each season under Best View			
			Winter	Int Cool	Int Warm	Summer
Wellington Town T1/T2 overload	Wellington Town T1/T2 fault	None	2033	2033	2033	2033

Different solution options considered

Solution Options	Description	Solves Constraint	Wider Benefit	Potential to be cost effective	Viable or Discounted
0	No Intervention	×	×	×	Discounted
Reinforce	ement				
1	Replace existing transformers	✓	✓	✓	Viable
2	Install additional transformer	✓	✓	✓	Viable
Operatio	nal Mitigation				
3	Transfer demand to other Primaries	×	✓	×	Discounted
Load Mai	nagement Schemes				
4	Uprate the existing transformer at Wellington Town via use of cyclic ratings	×	×	√	Discounted
Flexibility	y services				
5	Procure flexibility at Wellington Town	✓	✓	✓	Viable

Network Development Plans 2026

- We are currently developing our next set of Network Development Plans, scheduled for publication by May 2026.
- These plans will be **informed by DFES 2024 and 2025 data** to ensure alignment with the latest forecasts.
- Where possible, we will incorporate insights and learning from NESO's tRESP to strengthen our approach.
- Feedback from our Local Authority engagement (Summer 2025) is being considered to reflect regional priorities and needs.
- Once published, we will engage with stakeholders to share the outputs relevant to their areas.
- The Network Development Plans will also play a key role in shaping our ED3 business planning.

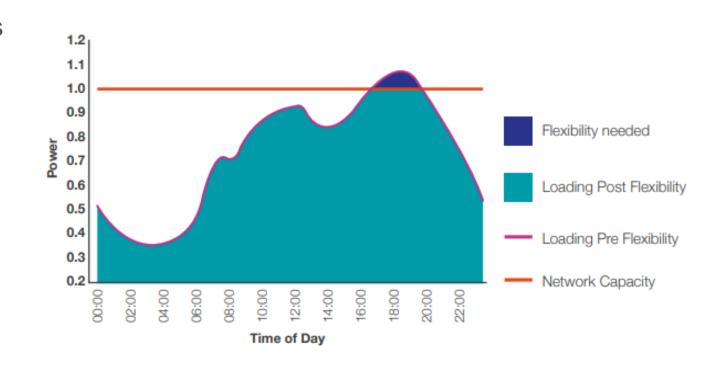
Distribution
Network Options
Assessment

Peter Gaskin
DSO Engineer, System Planning

Optioneering

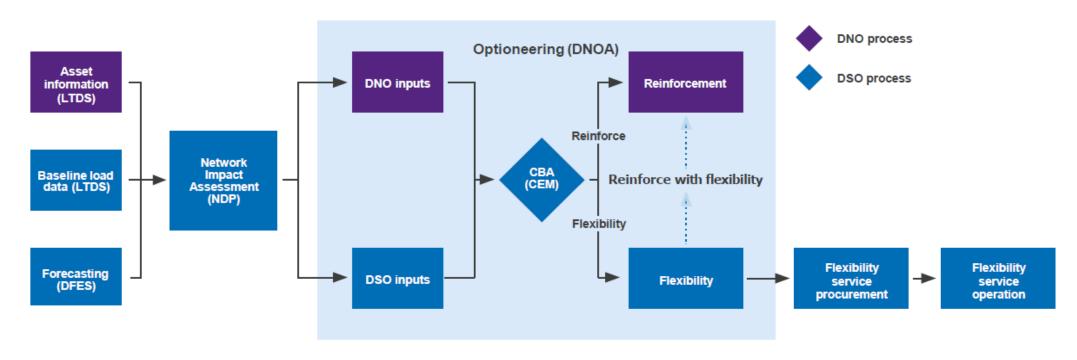
Distribution Network Options Assessment (DNOA)

- The viability of utilising flexibility to resolve constraints identified in the NDP is assessed.
- Gives visibility of NGED's decision-making processes.
- Helps Flexibility Service Providers (FSPs)
 to identify revenue opportunities.


Optioneering – Flexibility

Flexibility Overview

19.8 GWh of flexibility procured across our four licence areas last year.


63 HV and **744 LV** active flexibility zones.

162,800 flexibility assets signed up to our market platform. This is more than double the amount we had last year.

Optioneering – DNOA Process

Key:

LTDS: Long Term Development Statement DFES: Distribution Future Energy Scenarios

NDP: Network Development Plan DNO: Distribution Network Operator DSO: Distribution System Operator CBA: Cost Benefit Analysis

CEM: Common Evaluation Methodology

Optioneering for ED3 – DNOA Roadmap

Distribution Network Options Assessment (DNOA) Roadmap

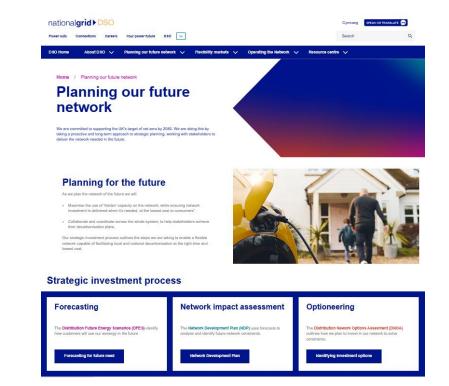
- The upcoming DNOA Roadmap will set out NGED's vision for the evolution of our Optioneering process in RIIO-ED3 (2028-2033).
- This report will discuss some of the new ways we are planning to utilise flexibility to drive benefits for customers.
- The DNOA process will continue to provide transparency in NGED's decision-making process.

System planning process

Forecasting

Distribution Future Energy Scenarios (DFES)

Network impact assessment


Network Development Plan (NDP)

Optioneering

Distribution Network
Options Assessment
(DNOA)

Go you our system planning pages to find out more

https://dso.national
grid.co.uk/planning
-our-future-network

We want to hear your views

It's important to us to make sure we are delivering what you need.

Has today improved your understanding of our system planning work?

What else could we do to keep you informed of our system plans?

national**grid** DSO

www.slido.com #189 2492

Questionsand Answers

